Stochastic Exploration of Real Varieties

David J. Kahle
Associate Professor

Joint with Jon Hauenstein

Overview

1. Motivation
2. Variety distributions
3. Sampling and implementation
4. Examples
5. Concluding thoughts

Motivation

Motivation

Motivation

Motivation

Add
 bivariate normal noise

David J. Kahle

Motivation

Problems for pattern recognition:
Very limiting - only can generate points from parametric varieties
No stochastic structure - distribution of estimators? etc.
General problem - how to sample near varieties?
Applications: algebraic pattern recognition (datasets/stochastic framework), TDA, solving nonlinear systems, optimization

Strategy for stochastically exploring real varieties Create a distribution with mass near the variety of interest Sample from the distribution
Magnetize the sampled points onto the variety with endgames

Variety distributions

Partition function, normalizing constant
The normal density is dependent on parameters

$$
p(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

μ is the mean; the center of the bell curve
σ is the standard deviation; governs dispersion about μ
Empirical rule -
68% of distribution within $\pm \sigma$ of μ
95% of distribution within $\pm 2 \sigma$ of μ
99.7% of distribution within $\pm 3 \sigma$ of μ

The normal density is

$$
p(x \mid \mu, \sigma) \propto \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

Probability mass concentrates near root of polynomial

$$
g(x)=g(x \mid \mu)=x-\mu \in \mathbb{R}[x]
$$

Same is true for arbitrary polynomials
$\exp \left\{-g^{2}\right\}$ is largest on the variety, where it has value 1
Decays exponentially as you move away from variety

Variety normal distribution - provisional

A random vector \boldsymbol{X} has the variety normal distribution if

$$
p(\boldsymbol{x} \mid g, \sigma) \propto \exp \left\{-\frac{g(\boldsymbol{x} \mid \boldsymbol{\beta})^{2}}{2 \sigma^{2}}\right\}
$$

with $g(\boldsymbol{x} \mid \boldsymbol{\beta}) \in \mathbb{R}[\boldsymbol{x}]$
g is "given" in the sense that the vector β is known and the polynomial form is specified

Example. $\boldsymbol{X}=(X Y)^{\prime} \sim \mathcal{N}_{2}\left(x^{2}+y^{2}-1, \sigma\right)$

$$
p(x, y \mid g, \sigma) \propto \exp \left\{-\frac{\left(x^{2}+y^{2}-1\right)^{2}}{2 \sigma^{2}}\right\}
$$

Variety normal distribution - provisional

Variety normal* distribution - problems

1. Non-compact varieties

If the variety is unbounded, then it obviously can't be normalized
Example: $g(x, y)=y-x$

Variety normal* distribution - problems

1. Non-compact varieties

Solution: Truncate or taper
2. σ does not gauge variability globally

Variety normal* distribution - problems

2. σ does not gauge variability globally

Probability mass does not decay evenly across variety
Example: Alpha curve, V(y² - ($\left.x^{3}+x^{2}\right)$)

Variety normal* distribution - problems

Variety normal* distribution - problems

2. σ does not gauge variability globally

Probability mass does not decay evenly across variety
Example: Alpha curve, $\mathrm{V}\left(\mathrm{y}^{2}-\left(\mathrm{x}^{3}+\mathrm{x}^{2}\right)\right)$
Cause: differing gradient sizes \Rightarrow differing change in variety

Solution: normalize g by the size of its gradient
(That doesn't change the zero locus.)

Variety normal* distribution - problems

Variety normal* distribution - problems

$$
p(\boldsymbol{x} \mid g, \sigma) \propto \exp \left\{-\frac{g(\boldsymbol{x} \mid \boldsymbol{\beta})^{2}}{2 \sigma^{2}}\right\}
$$

$$
p(\boldsymbol{x} \mid g, \sigma) \propto \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{g(\boldsymbol{x} \mid \boldsymbol{\beta})}{\left\|\nabla_{\boldsymbol{x}} g(\boldsymbol{x} \mid \boldsymbol{\beta})\right\|_{2}}\right)^{2}\right\}=\exp \left\{-\frac{\bar{g}(\boldsymbol{x} \mid \boldsymbol{\beta})^{2}}{2 \sigma^{2}}\right\}
$$

Variety normal* distribution - problems

1. Non-compact varieties

Solution: Truncate or taper
2. σ does not gauge variability globally

Solution: Normalize by gradient
3. Awkward parameter space B

Non-trivial choices of β 's can make the variety empty or full
B is not explicit: parameters don't range over a convenient open subset of R^{b}

Variety normal (VN) distribution

A random vector \boldsymbol{X} has the variety normal distribution if
$p(\boldsymbol{x} \mid g, \sigma) \propto \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{g(\boldsymbol{x} \mid \boldsymbol{\beta})}{\left\|\nabla_{\boldsymbol{x}} g(\boldsymbol{x} \mid \boldsymbol{\beta})\right\|_{2}}\right)^{2}\right\}=\exp \left\{-\frac{\bar{g}(\boldsymbol{x} \mid \boldsymbol{\beta})^{2}}{2 \sigma^{2}}\right\}$
with $g(\boldsymbol{x} \mid \boldsymbol{\beta}) \in \mathbb{R}[\boldsymbol{x}]$

$x^{2}+(4 y)^{2}-1 \quad(y-x)(y+x)$
$\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}$
$\left(x^{2}+y^{2}-1\right)^{3}-x^{2} y^{3}$

Variety normal (VN) distribution

A random vector \boldsymbol{X} has the variety normal distribution if
$p(\boldsymbol{x} \mid g, \sigma) \propto \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\frac{g(\boldsymbol{x} \mid \boldsymbol{\beta})}{\left\|\nabla_{\boldsymbol{x}} g(\boldsymbol{x} \mid \boldsymbol{\beta})\right\|_{2}}\right)^{2}\right\}=\exp \left\{-\frac{\bar{g}(\boldsymbol{x} \mid \boldsymbol{\beta})^{2}}{2 \sigma^{2}}\right\}$
with $g(\boldsymbol{x} \mid \boldsymbol{\beta}) \in \mathbb{R}[\boldsymbol{x}]$

Whitney umbrella $\vee\left(x^{2}-y^{2} z\right)$ for differing σ

Systems of polynomials g_{1}, \ldots, g_{m} are supported by the multivariety normal distribution

The multivariate normal distribution has density

$$
p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \propto \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}
$$

The multivariety normal distribution has density

$$
p(\boldsymbol{x} \mid \boldsymbol{g}, \boldsymbol{\Sigma}) \propto \exp \left\{-\frac{1}{2} \overline{\boldsymbol{g}}(\boldsymbol{x} \mid \boldsymbol{\beta})^{\prime} \boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{g}}(\boldsymbol{x} \mid \boldsymbol{\beta})\right\}
$$

Multivariety normal (MVN) distribution

The multivariety normal distribution has density

$$
p(\boldsymbol{x} \mid \boldsymbol{g}, \boldsymbol{\Sigma}) \propto \exp \left\{-\frac{1}{2} \overline{\boldsymbol{g}}(\boldsymbol{x} \mid \boldsymbol{\beta})^{\prime} \boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{g}}(\boldsymbol{x} \mid \boldsymbol{\beta})\right\}
$$

Example. $V\left(x^{2}+y^{2}-1, z\right)$

$$
\text { corr }=0 \quad \text { corr }=.9
$$

corr $=-.9$

+ correlation: mass aligns with same signed cells
- correlation: mass aligns with opposite signed cells

Variety induced distributions

The kernel of any PDF can be used to induce variety distributions via location-scale transformations

Example. Beta distributions scaled and shifted by 1/2

Sampling

and

implementation

Markov chain Monte Carlo (MCMC) is a class of algorithms for sampling probability distributions
 Stationary distribution is the target distribution
 Target distribution does not need to be normalized
 Foundational in Bayesian statistics \Rightarrow good software (BUGS, Stan)

Iterate two basic steps (мсмс used here)

1. Generate an observation that might come from target (proposal)
2. Accept/reject probabilistically according to Metropolis-Hastings

Best case: Starting anywhere, chain converges to draws from target distribution

From current location, propose multivariate normal step

If variability is too large, unacceptably low acceptance rate If variability is too small, unacceptably slow exploration

Both problems get worse in high dimensions

From current, propose step from physics simulation Marble rolling on ($\overline{\mathrm{g}}^{2} / \sigma^{2}$)'s surface, frictionless, given initial flick

$$
p(\boldsymbol{x} \mid \overline{\boldsymbol{g}}, \boldsymbol{\Sigma})
$$

$$
-\log p(\boldsymbol{x} \mid \overline{\boldsymbol{g}}, \boldsymbol{\Sigma})=\overline{\boldsymbol{g}}^{\prime} \boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{g}}
$$ Introduce auxiliary momenta variables, track level curve of Hamiltonian numerically, project back down

HMC is implemented in Stan, a probabilistic programming language and Bayesian engine

Stan specification

data \{
real y_obs;
real<lower=0> si;
\}
parameters \{
real x;
real y ;
\}
transformed parameters \{
real $g=\left(x^{\wedge} 2+\left(4^{*} y\right)^{\wedge} 2-1\right)$;
real ndg $=\operatorname{sqrt}\left(\left(2^{*} x\right)^{\wedge 2}+\left(2^{*}\left(4^{*} y\right)^{*} 4\right) \wedge 2\right)$;
real gbar = g / ndg;
\}
model \{
y_obs ~ normal(gbar, si);

// Code generated by Stan version 2.17.0
\#include <stan/model/model_header.hpp>
namespace model867873611022_stan_code_namespace \{
using std::istream;
using std::string;
using std::stringstream;
using std::vector;
using stan::io::dump;
using stan::math::lgamma;
using stan::model::prob_grad;
using namespace stan::math;
typedef Eigen: :Matrix<double, Eigen::Dynamic, $1>$ vec typedef Eigen::Matrix<double,1,Eigen::Dynamic> rov typedef Eigen::Matrix<double,Eigen::Dynamic,Eigen:

Sample

Interfaces : R, Julia, Python, CLI, ...

Many chains can be run in parallel

MVN distribution as a posterior distribution 国 BAYIOR

The MVN distribution can be represented as the posterior distribution of a non-identifiable model

Bayes' theorem is
${ }_{\text {Posterior }}=\frac{p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{\int p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d \boldsymbol{\theta}} \propto \underset{\text { Data }}{p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}$
MVN is the posterior of the model $\boldsymbol{Y} \sim \mathcal{N}_{m}(\overline{\boldsymbol{g}}, \boldsymbol{\Sigma})$ with an improper flat prior on \boldsymbol{x} and $\boldsymbol{y}=\mathbf{0}$ is observed
Roles of data and parameter swap
Bayes - Greek varies, Latin fixed/known
Here - Greek fixed/known, Latin varies

MVN distribution as a posterior distribution 国 BAYLOR

Bayes' theorem is
$\underset{\text { Posterior }}{\int p(\boldsymbol{\theta} \mid \boldsymbol{y})=} \frac{p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{\int p(\boldsymbol{\theta}) p(\boldsymbol{\theta}) d \boldsymbol{\theta}} \propto \underset{\text { Data }}{\sim p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}$

HMC is implemented in Stan, a probabilistic programming language and Bayesian engine

Stan specification data \{
 real y_obs;
 real<lower=0> si;
 \}

parameters \{
real x;
real y;
\}
transformed parameters \{
real $g=\left(x \wedge 2+(4 * y)^{\wedge} 2-1\right)$;
real ndg $=\operatorname{sqrt}\left(\left(2^{*} x\right) \wedge 2+\left(2^{*}\left(4^{*} y\right) * 4\right) \wedge 2\right)$;
real gbar = g / ndg;
\}
model \{
y_obs ~ normal(gbar, si);

```
C++
// Code generated by Stan version 2.17.0
#include <stan/model/model_header.hpp>
namespace model867873611022_stan_code_namespace {
using std::string;
using std::stringstream;
using std::vector;
using stan::io::dump;
using stan::math::lgamma;
using stan::model::prob_grad;
using namespace stan::math;
typedef Eigen::Matrix<double,Eigen::Dynamic,1> vec
typedef Eigen::Matrix<double,1,Eigen::Dynamic> rov
typedef Eigen::Matrix<double,Eigen::Dynamic,Eigen:
// Code generated by Stan version 2.17.0
\#include <stan/model/model_header.hpp>
namespace model867873611022_stan_code_namespace \{
```

```
using std::istream;
```

```
using std::istream;
```

Sample

VN(alpha curve, $\sigma=.10$); $100 \times$ eight chains $=800 \mathrm{abs}$

Examples

	$n=25$	$n=50$	$n=100$	$n=250$
$\sigma=.005^{\circ}$				
$\sigma=.025^{\circ}$				
$\sigma=.100^{\circ}$				

Examples

VN(torus, $\sigma=.005 / .100) ; 2000$ points

Examples

VN(whitney, $\sigma=.010 / .100)$; 2000 points

Examples

VN(3d heart, $\sigma=.005 / .025) ; 2000$ points

Examples

VN(2-torus, $\sigma=.005 / .100)$; 2000 points

The algorithm works remarkably well even for small σ

For points on the variety, endgames can be used Basic : Newton, gradient descent, etc. Harder : Projection with Bertini

Concluding thoughts

Experimentally the strategy seems to work well
Disconnected components are best found by initializing multiple chains with dispersed initial values

Singularities manifest as over-dispersed regions
o cannot be set too large

Great references:

Betancourt, M. "A Conceptual Introduction to Hamiltonian Monte Carlo." arXiv. (2018)
Neal, R. "MCMC Using Hamiltonian Dynamics" in Handbook of Markov Chain Monte Carlo. Eds. S. Brooks, A. Gelman, G. Jones, X. Meng. (2011)

Thank you!!
www.kahle.io

This material is based upon work supported by the National Science Foundation under Grant Nos. 1622449 and 1622369.

